Optical properties of Tb^{3+} in the diphosphate $CsYP_2O_7$

A. Akrim, D. Zambon and J.C. Cousseins

Laboratoire de Chimie des Solides, URA 444, Université Blaise Pascal, F-63177 Aubière Cedex (France)

Abstract

The luminescence of Tb^{3+} ion in the diphosphate $CsY_{1-x}Tb_xP_2O_7$ ($0 < x \le 1$) is reported. A high concentration quenching of the emission from the 5D_3 level due to a ${}^5D_3 \rightarrow {}^5D_4$ cross-relaxation process is pointed out, well described by the Inokuti and Hirayama model in the case of a dipole-dipole interaction. On the other hand, a weak concentration quenching of the emission originating from the 5D_4 level is observed. The luminescence dynamics showed that a fast diffusion occurs for the high Tb^{3+} ion concentration, involving the 5D_4 level; this process is moreover phonon-assisted.

1. Introduction

Some concentrated phosphates like NdP₅O₁₄ [1] are known as laser materials; moreover, they show a very weak concentration luminescence quenching. These good optical properties have to be partly related to their crystallographic characteristics. There is a weak interaction between the lanthanide ions, due to the fact that Nd polyhedra are separated from each other by phosphate groups, leading to a minimum Nd–Nd distance of 5.20 Å in NdP₅O₁₄ [2]. The diphosphates RbYP₂O₇ and CsYP₂O₇ present similar crystallographic features. Refinement of the RbYP₂O₇ structure has led to a minimum Y–Y distance equal to 5.30 Å [3]. The optical properties of these materials were thus investigated in our laboratory, especially when doped with Tb³⁺ or Eu³⁺ ions.

Since optical similarities between $RbYP_2O_7:Tb^{3+}$ and $CsYP_2O_7:Tb^{3+}$ are observed, we only report the results concerning the caesium compound in this paper. The influence of Tb^{3+} concentration on the luminescence from the ⁵D₃ and ⁵D₄ levels is analyzed. The luminescence dynamics allow us to explain the processes involved in the quenching of emission originating from ⁵D₃ and ⁵D₄ levels.

2. Experimental details

The diphosphates $CsY_{1-x}Tb_xP_2O_7$ ($0 < x \le 1$) were synthesized in the solid state by weighing out stoichiometric amounts of Cs_2CO_3 (STREM, 99%), Y_2O_3 (STREM, 99.9%), TbPO₄ and (NH₄)₂HPO₄ (STREM); the preliminary synthesis of TbPO₄ was described elsewhere [4]. The mixtures were put in an alumina crucible and heated at 600 °C for 4 h and then at 700–800 °C for 16 h.

The apparatus for optical measurements is presented in ref. 4.

3. Optical results

The emission spectra of $CsY_{1-x}Tb_xP_2O_7$ (0 < x < 1) were recorded at 300 and 77 K, under excitation at 337.1 nm. Figure 1 shows the spectrum recorded at 77 K for $CsY_{0.98}Tb_{0.02}P_2O_7$ in which the ${}^5D_3 \rightarrow {}^7F_1$ (370-480 nm) and ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ (480-680 nm) emissions are observed $(0 \le J \le 6)$. The ${}^5D_3 \rightarrow {}^7F_J$ emission shows a maximum intensity at a concentration of about 2% $(x \approx 0.02)$ then decreases quickly and is quenched above 10% ($x \approx 0.1$), whereas the ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ luminescence intensity increases rapidly; the maximum is obtained for a concentration of about 50% ($x \approx 0.5$). A weak concentration quenching is noticed beyond this value (Fig. 2). The ratio of ${}^{5}D_{3}$ and ${}^{5}D_{4}$ emission intensities is temperature independent. The luminescence decay times of the ${}^{5}D_{3} \rightarrow {}^{7}F_{4}$ emission ($\lambda = 435.6$ nm) were recorded at 300 and 77 K under excitation at 337.1 nm. For a very low concentration (less than 0.5%) the decay is exponential with a time constant of about 2 ms. When the concentration is increased, the initial part of the curves becomes non-exponential and the time constants decrease rapidly ($\tau = 0.6$ ms for x = 0.06). Figure 3 shows the decay profiles obtained for some Tb³⁺ concentrations, at 300 K. Temperature has no influence on the decay curves.

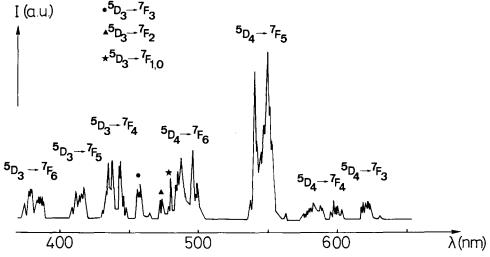


Fig. 1. Emission spectrum of Tb^{3+} in $CsY_{0.98}Tb_{0.02}P_2O_7$ at 77 K ($\lambda_{exc}=337.1$ nm).

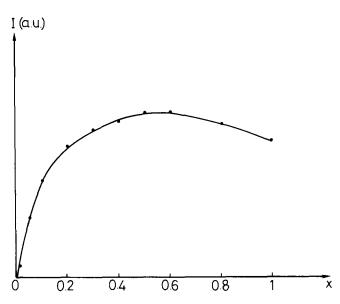


Fig. 2. Variation of the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ luminescence intensity versus the Tb³⁺ ion content ($\lambda_{exc} = 337.1$ nm).

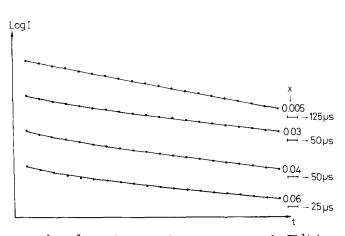


Fig. 3. ${}^{5}D_{3} \rightarrow {}^{7}F_{4}$ luminescence decay curves versus the Tb³⁺ ion concentration at 300 K (λ_{exc} = 337.1 nm). \bullet , experimental points; —, fitting by the relation (2).

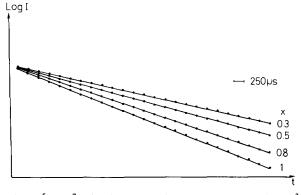


Fig. 4. ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ luminescence decay curves versus the Tb³⁺ ion concentration at 300 K (λ_{exc} = 337.1 nm). \bullet , experimental points; ----, fitting by an exponential.

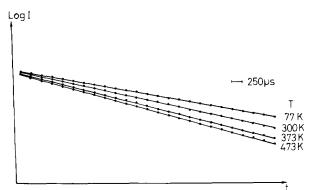


Fig. 5. ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ luminescence decay curves versus the temperature for the compound CsY_{0.8}Tb_{0.2}P₂O₇ (λ_{exc} = 337.1 nm). \bullet , experimental points; ----, fitting by an exponential.

With the same excitation conditions, luminescence decays of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ emission ($\lambda = 550.0$ nm) were achieved. For a Tb³⁺ content below 10%, the decays exhibit an initial rise which is a consequence of relaxation from ${}^{5}D_{3}$ to ${}^{5}D_{4}$. The time constants do not vary with the active ion content below 30% (the average value is 4.1 ms at 300 K and 4.9 ms at 77 K). For $0.3 \leq x \leq 1$,

100

the time constants decrease; the value obtained for x=1 is 2.3 ms at 300 K and 2.9 ms at 77 K. Figure 4 shows decay curves recorded for some Tb³⁺ concentrations, at 300 K. The decays are perfectly exponential in the whole concentration range ($0 < x \le 1$) and are influenced by temperature: the time constant values decrease when temperature is increased ($\tau = 5.0$ ms at 77 K and 3.3 ms at 473 K for x=0.2, for instance) (Fig. 5).

4. Discussion

A cross-relaxation process has been put forward to explain the concentration quenching of the ${}^{5}D_{3}$ emission of Tb³⁺ in different compounds [4]. It occurs because of the quasi-resonance of the energy gaps ${}^{5}D_{3}-{}^{5}D_{4}$ and ${}^{7}F_{6}-{}^{7}F_{0,1}$ according to:

$$Tb^{3+}(^{5}D_{3}) + Tb^{3+}(^{7}F_{6}) \rightarrow Tb^{3+}(^{5}D_{4}) + Tb^{3+}(^{7}F_{0,1})$$
 (1)

and leads to a non-exponential part of the decay curves. In order to determine the interactions responsible for the non-radiative relaxation from the ${}^{5}D_{3}$ level, the luminescence decays of ${}^{5}D_{3} \rightarrow {}^{7}F_{4}$ emission were fitted using the Inokuti and Hirayama model, corresponding to a direct transfer without diffusion. The intensity I(t) of the ${}^{5}D_{3}$ emission is given by [5]:

$$I(t) = I(0) \exp[-t/\tau_0 - \Gamma(1 - 3/n)C/C_0(t/\tau_0)^{3/n}]$$
(2)

in which I(0) is the intensity at t=0, τ_0 is the radiative lifetime of the ⁵D₃ level, without transfer, *C* is the Tb³⁺ concentration (at.%), C_0 is the transfer critical concentration, n=6, 8, 10, respectively, for electric dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions; $\Gamma(1-3/n)$ is the Euler function whose values are 1.77, 1.43 and 1.3 for n=6, 8, 10, respectively.

The best results are obtained with n = 6, corresponding to a dipole-dipole interaction (Fig. 3), using for τ_0 the time constant measured for CsY_{0.995}Tb_{0.005}P₂O₇, *i.e.* 2.2 ms at 300 K and 2.1 ms at 77 K. From the theoretical fit, the critical concentration was calculated: its value is $C_0 = 5\%$ (x = 0.05). Using the following relation [6]:

$$R_0 = 2(3/4\pi N_0)^{1/3} \tag{3}$$

where N_0 is the critical concentration expressed as a number of Tb³⁺ ions per cm³, we find a transfer critical distance R_0 of about 19 Å. Furthermore, a ${}^5D_3 \rightarrow {}^5D_4$ multiphonon relaxation process is negligible in our materials.

From the decays of the ${}^5D_4 \! \rightarrow {}^7\!F_5$ emission, we can note that, for $0 < x \le 0.3$, the active ions act as isolated ones. Above this concentration, the decay curves remain exponential and the time constant values decrease strongly; this means that we are probably dealing with a fast diffusion process. This behaviour has been studied for rare earth ions in crystals by Gandrud et al. [7]. This rapid energy migration through Tb³⁺ ions is phonon-assisted because of its strong dependence on temperature (Fig. 5). The pentaphosphate NdP_5O_{14} also presents similar optical characteristics [8]. In spite of this fast diffusion, a weak concentration quenching is observed, due to the relatively long distance between Tb^{3+} ions in CsYP₂O₇: Tb^{3+} ; the minimum Tb-Tb distance is about 5.40 Å in CsTbP₂O₇. Another possible reason for the weak quenching could be a small number of acceptors/traps and/or a weak donor-acceptor interaction.

5. Conclusion

A cross-relaxation process has been observed in $CsY_{1-x}Tb_xP_2O_7$; it is responsible for the non-radiative de-excitation from 5D_3 to 5D_4 . The 5D_3 luminescence dynamics is well described by the Inokuti and Hirayama model; a dipole-dipole interaction was determined between the active ions. A fast diffusion process through the 5D_4 level has been pointed out; it is a function of temperature. Nevertheless, a weak concentration quenching has been noted for the 5D_4 emission.

The optical study of the Eu^{3+} photoluminescence in $CsYP_2O_7$ is in progress in our laboratory. The fluorescence intensity of this ion could subsequently be optimized by means of a $Tb^{3+} \rightarrow Eu^{3+}$ energy transfer.

References

- 1 G. Huber and H.G. Danielmeyer, Appl. Phys., 18 (1979) 77.
- 2 H.Y.-P. Hong, Acta Crystallogr., Sect. B, 30 (1974) 468.
- 3 A. Akrim, D. Zambon, J. Metin and J. C. Cousseins, Eur. J. Solid State Inorg. Chem., 30 (1993) 483.
- 4 M. Tachihante, D. Zambon, A. Arbus, M. Zahir, A. Sadel and J.C. Cousseins, *Mater. Res. Bull.*, 28 (1993) 605.
- 5 M. Inokuti and F. Hirayama, J. Chem. Phys., 43 (1965) 1978.
- 6 G. Blasse, Philips Res. Rep., 24 (1969) 131.
- 7 W.B. Gandrud and H.W. Moos, J. Chem. Phys., 49 (1968) 2170.
- 8 M.M. Broer, D.L. Huber, W.M. Yen and W.K. Zwicker, *Phys. Rev. Lett.*, 49 (1982) 394.